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Formulation of the Singular Integral
Equation Technique for Planar

Transmission Lines

ABBAS SAYED OMAIt AND KLAUS SCHUNEMANN, MEMBER, IEEE

.&tract —The singnfar integraf equation technique is used to determine

the normal modes of propagation in general planar transmission lines.

Taking finlines as, an example, it is demonstrated how high-order modes

cau effectively and accurately be calculated. It is afso shown that complex

and backward-wave modes, which are known to exist in rectangular and

circular wavegaides with dielectric inserts, can also exist in finlines.

Besides a discussion of their characteristic featnres, tfds paper describes

the conditions under which complex and backward-wave modes are found

in finfines.

I. INTRODUCTION

PLANAR TRANSMISSION LINES include a variety

of structures showing, one or more air–dielectric

and/or dielectric-dielectric interfaces with metal strips

printed at these interfaces. Determining the normal modes

of propagation in these structures is of fundamental impor-

tance. Due to the completeness property of the set of

normal modes [1], an arbitrary electromagnetic field can be

expanded within this set so that the problem of determin-

ing the field, which can usually be formulated as a solution

of integro-differential equations, is reduced to a solution of

matrix equations.

Galerkin’s method in the spectral domain has been

successfully used in analyzing many of these structures

(see, e.g., [2]-[4]). In fact, this method is superior over all

other known methods if the dominant and the first few

higher order modes are computed. A characteristic matrix

of order 4 (which corresponds to just two basis functions in

the expansion of each of the unknown field components) is

quite sufficient to give accurate results. For the determina-

tion of still higher order modes, more basis functions are

needed so that the order of the characteristic matrix is

increased considerably. The singular integral equation

technique (SIE), which has been used in [5]–[7] for solving

many waveguide problems and in [8] for the analysis of

microstrip lines, has the advantage of characterizing the

problem by a relatively small-order matrix. Furthermore, it

gives accurate results for the high-order modes as will be

shown below. Another advantage is that the matrix ele-

ments are all given by analytical expressions so that neither

infinite sums nor numerical integrations are involved.
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Because the weight of the mode in a field expansion

series becomes smaller as the mode order goes higher, the

determination of the first, say IV, modes is the actual need.

Determining these ~ modes without loosing any inter-

mediate ones is actually ‘a problem for planar guiding

structures, because it has been found that some pairs of

modes become complex modes [9]–[15] within one or more

ranges of certain structure parameters (e.g., the slot width

in finlines) at a given frequency or, alternatively, ,within

one or more frequency ranges at given structure parame-

ters. This problem will also be investigated here taking the

generalized unilateral finline as a case study.

Complex and backward-wave modes are known to exist

in circular and rectangular waveguides with dielectric in-

serts [9]–[17]. It was reported in [9] that the existence of

backward-wave modes in a shielded dielectric rod guaran-

tees the existence of complex modes there. More theoretical

as well as experimental investigations on complex modes in

circular waveguides with dielectric inserts have been per-

formed in [10] -[13]. Although the possibility of backward-

wave modes in rectangular waveguides with dielectric in-

serts has been reported a long time ago [16], [17], complex

modes in shielded rectangular dielectric image guides have

just been reported [14], [15].

In fact, finlines can be regarded as ridged waveguides

with dielectric inserts (the substrate), so that complex and

backward-wave modes may also exist there. The nature of

such modes in finlines should be similar to that of the

corresponding ones in dielectric-loaded rectangular and

circular waveguides.

II. BASIC FORMULATION

The electromagnetic field in the generalized unilateral

finline shown in Fig. 1 is a linear combination of LSM and

LSE parts [1]. These two parts satisfy independently all

interface conditions. They are only coupled in order to

satisfy the edge conditions, as has been shown in [18]. The

tangential electric field Et and the surface current J, at the

interface x = O can then be written as

E,= E;+E: ~=~+~h

where superscripts e and h refer to the LSM and LSE

pats, respectively. The LSM part is, however, completely
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Fig. 1. Generalizedunilateral finline.

characterized by the z-components (E,’, J,e) because

E;= (– l/j~ ) dE;/dy J;= (– l/j~ ) dJ:/dy

whereas the LSE part is completely characterized by the

y-components (13;, J;) because

E:= (1/j~) dE;/dy J)= (1/jP ) ti;/dy.

With electric walls at y = O and y = b, the four compo-

nents E=’, J=’, E;, and J: can be written as

where F.’ and Fnh are the Fourier series expansion coeffi-

cients of the LSM’ and LSE Green’s functions, respectively

[19]. The SIE technique can now be formulated as follows.

1) Two cosine-series ~1( y) and ~z( y) are constructed in

terms of the tangential electric field Et so that they are

unknown only in the slot (sj < y < S$). These cosine-series

are then given by

fl(Y) = 5 411)cos(~~Y/~)

fz(Y) = ~ ~L2)cos(nmy/b) (2)
~=o

where the coefficients A$l) and A$2) are, in general, two
independent linear combinations of A ~ and Al.

2) Two sine-series ~3( y) and ~i( y) are constructed in

terms of the surface current J, such that the asymptotic

values (as n -+ co) of their coefficients are A~l) and ~~2),

respectively. The expansion coefficients of the series gl( y )

and gz( y) defined by

gl(y)= ~ A~l)sin(nmy/b) –~3(Y)
~=1

lx

g2(y)= x A$2)sin(nv/b)-f, (y) (3)
n=l

3) Applying the boundary conditions to be satisfied by

~~(-Y) and ~2(Y), the coefficients A:) and A~2) are de-
termined in terms of integrals of ~1( y) and ~2( y), respec-

tively, taken over the slot (.s~< y < s.j).

4) Substituting these integrals for Ajl) and A$2) into (3)

and applying the boundary conditions to be satisfied by

~3(.Y) and ~~( y), we get two integral equations relating

~1(-Y) and ~2(.Y) to gl(y) and g~(y), respectively. These
integral equations are of the standard singular type. Their

solutions are, e.g., given in [7].

5) Due to the asymptotic vanishing of the series coeffi-

cients of gl( y) and g2( y ), these series can be truncated

behind the IVth term, so that the functions ~1( y) and ~2(y)

are then known in the slot in terms of Ail) and A:), n < N.

6) The back substitution of fl( y) and ~2(y) in the

integrals determining A~l) and A$2), n < N —step 3)

—along with additional conditions (to be discussed later),

results in a finite homogeneous system of linear equations,

from which the propagation constants, as well as the field

expansion coefficients of the different modes, are obtained.

Care should be taken, however, in constructing (~l(y),

~2(-Y)) and (.fs(Y), fq(y)) which are related to Et and ~,
respectively. This is because EY and Jz, as well as dEz /dy

and tiY/dy, are singular at the edges (y= s;, y = s;) [20].

The order of singularity is the same for all components,

namely Iy – s’I - 1/2. This is exactly the proper type of

singularity, which can be described by the SIE technique.

Hence, any y-differentiation of either EY, J,, dE, /dy, or

tiY/dy is not allowed in constructing jl( y), ~2.(y), ~s(y),

and ~~( y). This leads to two alternatives. In the first case,

A(l) and A~2J are linear combinations of A: and A:, so

thnat the LSM and LSE parts of the field are coupled from

the beginning. We call this formulation the coupling one.

In the second case, Ajl) and A~2) are proportional to A;

and A:, respectively, so that the LSM and LSE parts of the

field are decoupled. Coupling is performed as a final step

in the form of additional conditions, as will be shown later.

We call this formulation the decoupling one.

A. The Coupling Formulation

The functions ~1( y) and ~2( y) are constructed as

~,(Y) = dEz/4

fz(.Y) = [(k~-~2)Ey +jP(dE./dY)]/jw~o (4)

whereas ~3( y ) and ~1( y ) are constructed as

f,(y) = [(K’B2 – Kek~)J, + jflK’(tiY/dy)]/jti~ OKeKh

f,(Y) = [JMK’-K’)Jz+ K’(dJy/dy)]/K’K’. (5)

Here K’ and Kh are the asymptotic limits of (nm/b).F:

and FHh/(n r/b), respectively.

The expansion coefficients A$lJ and A~2) of \l( y) and

~z( y), respectively, are then related to A; and Al by

[1[
A:l)(nn/b)

1[

- (nn\b)2/j~ A:

Aj2) = ju60(nn/b)/j~ aVjwo A:

are then vanishing asymptotically. (6)
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where a; = k: – P2 – (n~/b)2. The series expansions of

~o(yys and ~.(y) are readily proved to have the following

~,(y) = ~ [P#)A~l) + P~2)A~2)] sin (n~y/b)
~=1

f4(Y) = ~~1 [Qil~$l) + Qi2)Ai2)]sin(n~y/b) (7)

where P~l), F’J2J, Q~l), and Q~2) are given in terms of F;

and F.h with their asymptotic limits being 1, (D,O, and 1,

respectively.

The series’ gl(y) and g2(y) defined in (3) are then given

by

which are the considered boundary conditions, axe ordy

necessary conditions for the vanishing of Et and Y. on their

respective regions (i.e., El on the fins and J, in the slot).

This guarantees the vanishing of EY and J= on their respec-

tive regions but only the constancy of E, and JY on their

respective regions. However, points y = O and y = b, at

which E= = O, belong to the fins, so that the constant value

of E= on the fins is automatically zero. Hence, just one

additional condition must be imposed, namely the vanish-

ing of JY at any point in the slot, so that the constant value
of JY over the slot is put to zero.

B. The Decoupling Formulation

Functions ~l(y) and ~2(y) are now constructed as
gl(y) = ~ [(1 – P~l))A~l)– P~2)A~2)] sin(nwy/b)

dfl/dy = v, “Et = – AtE:/jb~=1

gz(y) = ~ [– Qil)A$I1)+(l– Q~2))A$2)] sin(nny/b).
~=1

(8)

Defining

CF= v/b, ql = @/b, 92= ws;/b (9)

we can write for the boundary conditions to be imposed on

f,(~)>” “ “>f4(vJ)

X+2(9)-O (%<9< 92), i=l,2. (lo)

The coefficients A~l) and A~2) are then given by

‘(11)A$)= [2/nj/p2hi(rp)cos mpdq, i=l,2.
%

Making use of the transformations

Cosq) = Cos [(92 + 91)/2] Cos [(~’ – 91)/2]

– qsin[(qz+ Vl)/2] sin[(T2 – 91)/2]

G,(q) =gi(q)/Sinq

IIZ(q)=hi(q)/sinq, i=l,2 (12)

we get the following standard singular integral equations:

Gi(q) = (l/m) ~_:lH, (q’)/(q – q’) dq’,

-l<q<+l, i=l,2. (13)

Their solutions are

II,(q) = (1– q2)-1’2[Af)/sin [(q2 + 91)/2]

- sin [(T2 – rfl)/2] + (l/fi)j_~l(l – q’2)1’2

fz(y) ‘~”(v, xE,) = AtE}/jB (15)

whereas functions f3( y ) and f4( y ) are constructed accord-

ing to

df,/dy = ‘jqLo[:c(V, X ~)]/Kk

Here v, and A, are the del and laplacian operators in the

y – z-plane, respectively, and ~ is the unit vector in the

x-directions. The boundary conditions to be imposed on

f~(~), fAy), f3(Y), and fA(Y) (which are dfddy = o =

fz(y) on the fins and f3(y) = O = df4/dy in the slot) are
again necessary conditions for the vanishing of Et and J,
on their respective regions. In this case, it is guaranteed

that the individual components of Et and J, are harmonic

functions on their respective regions [19], so that additional

conditions must be imposed. These conditions can be

shown to be the vanishing of only one component of J?3t

and J, cm the boundaries of their respective regions, which

are the edges (y = s;, y = sj).

III. HIGH-ORDER MODES ACCURACY

The only approximation involved in the SIE technique is

the truncation of the infinite series gl(y) and gz(y) be-

hind the ~th term. However, it can be proved that the n th

coefficients of gl( y) and g2(y) are almost zero if (n r/b)2

> (2,k~ – ~’), where ;, ii the largest dielectric constant

involved. This limits the number of high-order modes,

which can be calculated accurately, because the propa-

gation constant of the highest order mode (which usually is

evanescent) should satisfy

“Gi(TJ’)/(q’– q) dtf, i=l,2. (14) For normally used dimensions, dielectric constants, and

operation frequencies, ~ = 3 (corresponding to a char-

As may easily be seen, the vanishing of fl(y) and f2(y) acteristic matrix of order 7) is sufficient to give the first 30

on the metal fins and that of f3 ( y) and f4( y ) in the slot, modes accurately.
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Fig. 2. Typicrd behavior of inductive and capacitive modes with increas-
ing slot width.

IV. THE PROBLEM OF MODE DISAPPEARANCE

It has been shown in [18], that the modes of the gener-

alized unilateral finline behave either inductively or capaci-

tively if they are below cutoff. The interesting difference

between the two types is the dependence of their propa-

gation constants on the slot width. The propagation con-

stant squared (~ 2) (which is always a real number in the

lossless case, whether the mode is below or above cutoff) of

an inductive (a capacitive) mode decreases (increases) versus

the slot width, as is shown in Fig. 2. Consider now the

modes for a certain slot width being arranged according to

their ~ 2. If one of any two successive modes is inductive

with ~,2 while the other is capacitive with a smaller ~C2,and

the slot width is increased, then ~,2 and ~C2approach each

other up to a certain slot width where ~,2 = ~C2.For this slot

width, we get two degenerate modes which are no longer

orthogonal. They should be treated carefully because of the

strong coupling between them. If the slot width is increased

beyond this value both modes will disappear. This will be

illustrated in the following.

The final step in nearly all mode analysis methods is the

solution of a homogeneous system of linear equations

which can be written as a matrix equation

[C].x=o.

The elements of the matrix [C], usually called the char-

acteristic matrix, depend on the unknown propagation

constant ~. The elements of the column vector X de-

termine the electromagnetic-field configuration of the mode

whose propagation constant is /3. The elements of [C] can

always be normalized in such a way that they are all real

functions of ~ 2 if the structure is lossless. The matrix

equation is solved by looking for the values of ~, making

the matrix [C] singular. Each of these values characterizes

one of the structure modes.

For our case, we assume that the finline is lossless so

that the determinant of the matrix [C] is a real function

D( ~ 2). The different modes are then obtained by looking

for the zeros of 1)(~2). The behavior of ~(/12) near the

aforementioned successive inductive and capacitive modes

two degenerate modes

Fig. 3. TWical behavior of how two modes disappear.

two degenerate modes

mduc t) Ve 171&W I capacit! w modes

Fig. 4. Typical behavior of how two modes reappear

for a certain range of the slot width typically is as shown in

Fig. 3. As the slot width increases from SI to S2, /?2 of the

inductive mode decreases, while that of the capacitive

mode increases. At S3 the two modes become degenerate

and at Sq they disappear completely. This effect occurs

within a certain range of slot widths. Afterwards, we get

the situation shown in Fig. 4. At S5 ( > S4), the two modes

are still nonexisting; at S6, two degenerate modes are

obtained, and for s > S6, two nondegenerate modes exist

again: one is inductive (now to the left-hand side) and the

other is capacitive (to the right-hand side). It is important

to note that when the slot width increases from ST to S8, ~ 2

of the inductive mode still decreases while that of the

capacitive mode still increases.

The disappearance of some modes at a given frequency
within a range of slot widths (namely for S3<s < SG) or,

alternatively, at a given slot width within a range of

frequencies is physically impossible. This can be explained

by regarding the finline discontinuity shown in Fig. 5.

Assuming that 8s << S3, this discontinuity is very weak, so

that any incident mode in finline” a“ can be nearly matched

at ZO to a single mode in finline “ b“ of nearly the same

field configuration (whose propagation constant is very

near that of the incident mode). Let us hypothetically

assume that the incident field in finline “ a“ consists only

of the two degenerate modes (shown in Fig. 3). If there

were no modes in finline “ b“ with propagation constants
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Fig. 5. A weak firdine discontinuity.

which are near to that of the incident modes in finline “ a“,

we should expect that there are also no modes in finline

“ b“ with field configurations which are similar to those of

the incident modes in finline “ a“. This means that the

matching at ZO requires a large number of excited modes at

both sides of discontinuity, which contradicts with the

weakness of the discontinuity.

V. FINLINE COMPLEX MODES

Modes with complex propagation constants in lossless

guiding structures have been known for a long time as

“complex modes” [9]. They have been reported in [9] to

occur as a continuation of backward-wave modes in the

modal spectrum of shielded dielectric rods. They can also

exist even if there is no region of the spectrum in which

backward-wave modes can propagate [10]. The same has

been reported in [14] and [15] with respect to shielded

rectangular dielectric image guides. In both cases, back-

ward-wave and complex modes can exist in a waveguide

with a dielectric insert as modes of “hybrid-type.” They

cannot exist in a dielectric loaded circular waveguide

without azimuthal dependence, because modes with no

azimuthal dependence are either TE-type or TM-type

modes. They can also not exist in the dielectric slab loaded

rectangular waveguide because the modes of this structure

are either of the LSE type or LSM type [1].

Finlines are, in fact, dielectric-loaded ridged waveguides,

the modes of which are all of hybrid-type. Complex and

backward-wave modes are consequently possible in finlines.

Now, we return to the problem of mode disappearance.

The only possibility for the disappearance of the aforemen-

tioned two modes is that their ~ 2 are no longer real. Hence,

zeros of ~(~ 2, must be looked for in the complex plane

rather than on the real axis. Although D( ~ 2) is a com-

plicated function and hot at all a “polynomial with real

coefficients,’s “Its zeros for the particular slot ~idth range

are found to be always a complex conjugate pair.

Now, let us investigat& a pair of complex modes in some

details. As shown in Fig. 6, let the corresponding complex

conjugate zeros of 11( ~ 2) be ~~ and &. Their square

roots, which are physically possible for a z-dependence
e ‘J~z and a time &pen&qce eJ*t, are also shown and can

be written as

~l=~’–ja’ /32= -/3’ -jcY’

where a’ and ~’ are positive numbers. This means that one

mode propagates in the + z-direction and is attenuated in

Fig. 6. The propagation constants of two complex modes,

the same direction. The other mode is also attenuated in

this direction; it propagates, however, in the – z-direction.

From the first view, it is easily’ stated that a mode with the

complex propagation constant ~1 propagates in the same

direction, in which it is attenuated; this means a continu-

ous energy loss, although the structure has been assumed

lossless. The other mode with propagation constant ~2

propagates opposite to the direction in which it is damped;

this means a continuous energy gain, although the structure

is passive. This point of view would be correct only if the

two modes were not coupled. In fact, it has been found as

a result of extensive numerical investigations that the two

modes are so strongly coupled, that the electric field of

each mode does not couple to its own magnetic field, but

to the magnetic field of the other mode, i.e.,

J(el Xh~). dS=O=J(e2Xhj). dS (17)
s s

J(el X)ij). dS=p#O J(e2Xhf). dS=–p*.
s s

(18)

Here el(hl) and e2(h z) are the transverse electric- (mag-

netic-) field vectors of the modes with propagation con-

stants /31 and ~2, respectively, and S is the finline cross

section. It has also bqen found from the same numerical

investigations that, although the two modes are coupled in

energy sense, they are still orthogonal in the sense of the

following orthogoflality relations:

J(e1Xh2). dS=O=J(e2Xh1). dS (19)
s s

J(el X/tl). ffS=p J(e2X/t2). dS =-p*. (20)
s s

A similar result has also been obtained for the shielded

dielectric rod [13] and the shielded rectangular dielectric

image guide [15]. Equations (17) and (18) mean that each

mode cannot exist alone; both sh~uld always exist to-

gether, if they exist. As will be shown below, (18) plays an

important role in the evanescent nature of the two coupled

modes.
“,

Now we investigate the problem from the energy point

of view. Let us assume that the two questionable modes are
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excited (by, e.g., a certain discontinuity). Because each of

these modes is not coupled to the other modes which may

also be excited, it is sufficient to study the energy con-

tained in these two modes only. Let E and H be the

transverse electric- and magnetic-field vectors, respectively,

of the two superposed modes; i.e., let

E = A1e-J~lzel + &e-J~2ze2

H = A1e-J~l’hl + A2e-Jf12zh2.

Integrating the Poynting vector over the finline cross sec-

tion, and making use of (17) and (18), one obtains

J
P= (Ex H*). dS=jWsin(2~’z +O)e-2”’Z

s

where AIA ~p = – ( W72) e ‘Jo. The vanishing of the real

part of P guarantees that the two superposed modes carry

no active power, i.e., they behave as a whole evanescently.

The energy stored in these superposed modes is shown in

Fig. 7. It oscillates along the line once being inductive and

once being capacitive in nature with exponential decay.

This behavior is not, however, unexpected because one of

these two modes was inductive and the other one was

capacitive before their /32 disappeared on the real axis.

The vanishing of the active power transmitted by a pair

of complex modes has also been reported in [13] and [15]

for the shielded dielectric rod and image guide, respec-

tively, although using a different reasoning, namely, the

total active powers transmitted inside and outside the

dielectric region, are of equal magnitudes but of opposite

directions.

VI. BACKWARD-WAVE MODES IN FINLINES

Although pairs of complex modes can exist in finlines

for any value of the substrate dielectric constant c,, back-

ward-wave mc~des can only exist when the value of c, is

relatively high. Small values of (,, which are usually used

for normal finlines (typically, t,= 2.22), lead to a very

small (~ ‘/a’) ratio of any pair of complex modes which

can exist. No backward-wave modes have been found for

small values of E,. However, if both c, and the substrate

thickness are considerably increased, the (~’/a’) ratio of

low-order complex modes increases considerably. In ad-

dition, if a pair of complex modes is near cutoff, it maybe

continued into a pair of forward- and backward-wave

modes.

Finally, we would like to state that, although finlines

have only been investigated, we believe that complex and

backward-wave modes can also exist in any planar guiding

structure with closed conducting boundaries.

VII. NUMERICAL RESULTS

To illustrate the fast convergence of truncating the char-

acteristic matrix, the propagation constants of the first 30

modes of a unilateral finline have been calculated for three

different slot widths using a matrix order of 5, 7, and 9

(i.e., truncating the infinite series g,(y) and g2(y) behind

the 2nd, 3rd, and 4th term, respectively. The results in

I
z

Fig. 7. Net stored energy of the superposed complex modes.

Tables I, II, and 111 show that, whatever the slot width, a

matrix order of 7 is quite sufficient to give accurate results

for the first 30 modes.

The four coupling integrals given in (17) and (18) have

been numerically calculated by using a 100-term Fourier

expansion for each field component. The results are tabu-

lated in Table IV for the slot width ranging between 0.5

mm and 1.5 mm. For 0.5 mm <s <0.7 mm, we have two

ordinary evanescent modes. The first (second) is inductive

(capacitive) with ~z decreasing (increasing) versus s. The

values of the coupling integrals are in good agreement to

the exact values given, e.g, in [1] for general inhomoge-

neously filled waveguides. For 0.8 mm <s <1.3 mm, we

have a pair of complex modes. The coupling integrals are

again in good agreement with the values given by (17) and

(18). The smallness of the (~’/a’) ratio is due to the

smallness of the substrate dielectric constant (c, = 2.22)

and the substrate thickness. Higher ( ~’/a’) values can be

obtained by increasing these parameters as will be shown

later. Finally, for 1.4 mm <s <1.5 mm, we have two

ordinary evanescent modes again. The first (second) is now

capacitive (inductive) with ~ 2 increasing (decreasing) versus

s. The quantitative values of the coupling integrals are

again in good agreement to the exact values given in [1].

The frequency dependencies of ~’ and a’ of the complex

modes existing in the same finline with a slot width of 1.0

mm are plotted in Fig. 8. For F <15 GHz, we have two

ordinary evanescent modes. Their dispersion curves are not

distinugishable in the figure. The values of their a’ at, e.g.,

F=1O GHz are (3.1608 mm-l) and (3.1673 mm-l). For

15 GHz < F <117 GHz, we have a pair of complex modes.

An interesting observation is the wideness of the frequency

band over which the complex modes exist (more than 100

GHz). This wideness is, however, related to the smallness

of the (~ ‘/a’) ratio (note that the upper plot of Fig. 8 is for

100 times ~’, whereas the lower one is for a’) because this

band decreases considerably when the (/3’/a’) ratio in-

creases as will be shown below. For F >118 GHz, the two

complex modes are continued into two ordinary evanescent

modes again.

Complex modes in a finline with a high value of the

substrate dielectric constant (E, = 20) and a relatively thick
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TABLE I
THEPROPAGATICONCONSTANTSOFTHEFIRST30 MODESIN A

UNILATERALFINLINEOF0.2-mm SLOT WIDTH

~---------r-------y _________ r---------r---------r---------r---------r____-__-_r_____----r_____--__r---------
1 I 1 t 1 1 1 I

1mode no. ~
1

I

w

1 1 1 , ! 1 ! I

,,
(

1: 2/ 3 1 4! 5; 6! 7: 8; 91 10 :
1 I I 1 1 1

, matrix , , , , ( I

/ order 1 1 I 1 1 ,

;.. _--____ \___ -_____ ;-_____ ---; _________ \__-______ ;_________ :-________ :________ -~-_______ -}_-- __ . . ..\. . . . . . . . . .

:5X5 ~ +0.6837 ~-j 0.6067 [-j 0.7448! -j.l.5955~ -j 1.6489 !-j 1.68011 -j 1.74721 -] 1.9938; -q 2.47471 -] 2.5509~

~---------t---------t---------t---------t----------t---------t---------E---------}---------}---------}---------:

17X7 ! +0.6824 ~ -j 0.6067! -j 0.7448~ -j 1.5955; -j 1.64891 -] 1.6801! -] 1.7470] -] 1.9926! -j 2.4747! –] 2.5495!

;:; ;::; :::[---------::::::::::::::::::::;:::::::::::::::::::::::::::::;:::::::::;:::::::::;::::::::::::::::::'
19X9 ~ +0.6820 ~-j 0.6067 {-j 0.7448 {-j 1 .59551-3 1.6489! -] 1.6800\ -] 1.7470~ -] 1.9922/ -j 2.47471 -] 2.5491!

__________ ~_----- --_r _______________ -___r --------- ~ _________

i mode no. ~

r---------~ --------_,-. -__.. ---,______ ----r___ --____l

~“~12~13~’4~1’~l’~17~l’~” ~zol

order \, 1
: ____ -_-__ : . . . ---------- ,L__-______ \____ -_-__ ~_-__ ._-__ ~_________ ;_____ .___': _______ -_; -_-- _-_--; -__- ___- _~-____-_--;

:5X5
!-j 2.7083 j-I 3.0745 ;-j 3.l136i-j 3.2065 t-I 3.2384 !-I 3.36531 -I 3.4763: -j 3.4976; -j 3.60513 -j 3.6683 I

L____ -.__.; ____ --___ \_-_____ -_}__ ---- ___: --------- ;_____ -__-t_-__-__ -_~_-_------; -_-__ ----} ______ .-.~-___. _.. -i

:7X7 ~-] 2.7073 [–] 3.0738 ~-j 3.1136 ~-j 3.2065 ~-] 3 .23751-] 3.3649! -, 3.47631 -] 3.49711 -] 3.6057! -j 3.6656!
;_______
-_______ ::::; :;; ;;; ;;;::::::::::::::::::::::::::::::::::::::::::::: ;::; :::::::::;:::::::::;:::::::::;:::::::::!
:9X9 l-j 2.7070 {-j 3.0735 ~-I 3.l136\-j 3.2065~ -j 3.2372 \-j 3.3648! -I 3.4763! -I 3.4969! -] 3.6057~ -] 3.6648!

---------- ,__________ ~ _________ ~ _________ ,__________ ~ _________ ~_____ . ___, __________ ,__________ ,__________ ,__________ ,

; mode no. ~
I 1 1 I 1 I 1 1 t

A

I

1 , 1 t 1 , f 1 I I

21 ; 22 ~ 23 ~ 24 ; 25 ; 26 ~ 27 ; 28 ~ 29 30 !
, , , I , , , I ,

~ order / 1 I I ( 1 I I ( c

~__. __. ___: -__-- ____\ _-_______ \______ .__}. __--- _-_: _________ L_____ .___'L__ -_-- ___: ______ --- L_-- __"____ L_________:
1

15X5 ~- I 3.8140 ;-I 3 .87871-I 3.9308 ;-j 3.9683 !-j 4.0196 !-I 4.0854! -I 4.2335: -I 4.3530~ -j 4.36211 -I 4.4326/
L____ -____ \_________ ~__- __. --.; -.-_____ -~-________ ~____ -__- _~_-_-_. ___~.. ------ _~-_-_-_---; . . . -----------------

7X7 i-] 3.8130 ~-j 3.8787 ~-g 3.9308! -] 3 .9663!-] 4.0196 ~-I 4.0786! -j 4.23181 –, 4.34831 –I 4.36351 –] 4.43264
;_____
~___ -_::::::::::::; :::; ;:; ;:; ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
19X9 !-3 3.8127 \-j 3 .87871-] 3.9308 ~-] 3 .96581-] 4.0196 ~-] 4.0770 ~-3 4.2314~ -] 4.3475! ‘] 4.3637; ‘] 4.4326!

Parameters: a = 2 b = 3.556 mm, substrate thickness= 0.254 mm, substrate dielectric constant= 2.22, frequency
=30 GHz.

TABLE II
THE PROPAGATION CONSTANTS OF THE FIRST 30 MODES IN A

UNILATERAL FINLINE OF 1.O-mm SLOT WIDTH

~------ –––r–________
I

,n”d~ “o, ,

‘v 1

“E+trlx ,

-------- .

2

order I
. . . . . . . . . . ; __________

,,
5X5 ! +0.5976
;.. ------- ;__– ______

I
7X7 ; +0.5976

---------- ,. —__ ——---

,’3X9 ~ +0.5975
. . . . . . . . . . . . . . . . . ..-
~------ .--r ____ . . . . .

!r,ode no. , I

v

11 ) 12
,

, matrix ,
! order t
. ---—----- L ---—...__ : _________

5X5
(
,-] 2 .4754;-] 2.605:
}___________________

7X7 ;-] 2 .4754;-, 2.605,
.--------- \--___ --__: _________

:’3.9 ~-, 2 .4754;-] 2.605,
---------- L _________ L-- ___ . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . ..-

--------
-] 0.6154.------- .
-] 0.6154

-j 0.6154-------- .
r---------

---------

3

-] 0.8564
-------- .

‘] 0.8564
-------- .

-] 0.8563
-------- .
--------

13

-] 2.8094

-] 2.8094
---------

-, 2.8089
_________

. r ___ . . . . . . ;

--------- ~-_-_----_~----- ---- r --------- ~ --------- ~ --------- ~ --------- ,

1 I 1 1 1 I I

I I 1 1 1 1 1

--------- ~.. _-. _____ }_________ ---------L ---------L ---------} --------- I
tii

-j 1 .6031\-, 1.6489 !-j 1.6847 !-j 1.7697 i-j 1.8877! -j 2.0873! -I 2.4642\
--------- r _________ I~________ I ~-------: -\-------- _\------- __:_ --------l

-I 1.6031~ -I 1.6489 ~-I 1.6847 ;-j 1 .76971-I 1.8877! -j 2.0873\ -j 2.4640\
.-____ ––.; ____ -____! ~-----.. ---r. --______ :_----- __-F-_____ ---r ----------

-I 1.6031 \-I 1 .64891-j 1.6847 ~-j 1.7696 ~-j 1.8877 \-j 2.0872 \-j 2.4640;
------------------- !______ ------------------------- ---------- ---------- I

I 4 i- 1
I , I I 1 1 I

( 1 , 1 I ,

14 ~ 15 ~ 16 ~ 17 / 18 ~ 19 : 20 :
I , 1 1 1 1 I

I I 1 1
--------- :-_- ____..:... _... ___: __.. ___ . . . ..l.______ ---_____ +__l+__l
-I 3.2019 !-I 3. 27571-I 3. 42381-I 3.47641- I 3.5024i -j 3.5950 t-j 3.6260\
--------- L_______ -_~_____.. ___~__-------L ------------------------------

-I 3.2014 !-j 3.2757 ;-I 3.4230 i-j 3.4764 i-j 3.5021! -j 3.5948 i-j 3.62341
--------- ~ _________ ;_____ .. ___} --------- } --------- ; ----------- t---------!

-I 3 .20121-j 3.2756 i-j 3. 42211-j 3.47641-j 3.5021 ~-j 3.59471 -j 3.6225[
-__ . . ..__L _________!. _____ ..__-!. -----____!. ---------L ------------------- I

, , l----------iI
I I I 1 , 1

, mode no. I
I ( 1 1

‘w

, , ! 1 ! 1 1 1 1
21 ; 22 ~ 23 / 24 ~ 25 ; 26 ; 27 ~ 28 ; 29 ~ 30

: matr, x \
I I I I 1 I I , 1I

\ order ,
I I , , , 1 I , I

1
L-..----_-- ..-- _____ -L______ -__'L______ ..-'L.. ________ p_________ F____ -____ ;--- ______ F______ --- F---------: ---------l

:5X5 I–I 3.6920 !-3 3.8520! –I 3.8605 !-I 3.9270 ~-j 3.9783 !-j 4.0130 ~-j 4.1337! -I 4.2822 ~-j 4.4232 ~-j 4.47941
I

. --------- ~_ . . . . --------------------------------------------------- .___: __-__ ----~ ---------: ---------: ---------l

‘7X7 I- I 3.6916[– I 3.8518! -j 3.8563 !-I 3 .92651-I 3 .9750/-3 4.0120 ;-2 4.1326{– I 4.2815 !-j 4.4212! -I 4.4729 I

:;i:;:!:;:::::::::::::::::::::::;::r::::::::r:::::::::::::::::::i
~-] 3.6916 [-, 3.8516 ~-, 3 .8540;-, 3 .9263!-, 3 .9746!-, 4.0115 [-, 4 .1326;-] 4 .2806;-, 4.3498 ~-] 4.3543 I

Parameters: As in Table I.
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TABLE III

THE PROPAGATION CONSTANTS OF THE FIRST 30 MODES IN A
UNILATERAL FINLINE OF 3.O-mm SLOT WIDTH

.T. -------- ~___ --____ r_-___ ._–– , . . .._. ___r___. _-.. –~... ___r ____________ ~__- ______ r_– _______ ~_________
( I ( , ,

r,,,,,e “o. ; ( I
( I ,

‘v

I I
1 I 2; 3; 4 5 6; 1 8: 9: 10 i

, ,
mat,, . , I I t I 1

,
; ,,rd, r ,

,
( 1

L --- —--- . - } _________ : _ . _______ : _________ + ___________________ ;______ ---l
~---------_ ~_______ ~[--------------------

,5X5 ~ +0.4931 l-, 0 .62071-] 1.1356 !-j 1.6489~– I 1.6501 ~-j 1 .7080!-] 1.73911–3 1 .8721!-] 1.8777 ~-j 2.0731~
:----- . ..-. _--... ___; _--- _____ :._______ -;______ .__} _________ I~_______ --l ~-_______ -;-_ -____-_f ~_-. -__: __________

:7X7
(
\ +0.4930 /-] 0.6207 ~-I 1 .1356/-I 1.6489 \-j 1.6501 ~-I 1.7080 ;-j 1.7382 \-j 1.8721 ~-j 1.8776 \-j 2.07231

r ------------------- +----- .--- T--------- T---- .---- +--------- T--------- +------ .-- f--- ______ F_______ --r-- _-_-___;

:9X9 ~ +0.4930 ~-g 0.6207 ~-j 1.i355 ;-j 1.6489 ~-] 1.6501 ~-j 1.7080 \-j 1.7379 ~-j 1.8721 \-I 1.8776 \-j 2.0719/
. . . . . . . . . . . ___ -.. __. . L-. ————___ ___________________________–___ ---------- L __-_ . . . ..-__ _________ L _________ __________ ,

. _-.-.-—-- ,––-. --. –_r _________
~––––----. -’T-- __.. -- A T _________

~__. ____ -or --------- ~--------- ~_______ --r---------l

I , 0 1

I mode no. ~ I 1 1 1

w

, 1

11 : 12 : 13 ! 14 15 : 16 17 ! 18 I 19 I 20 !
t

: ma t,,, I I 1 1 , t 1 1
,

; ,>rder , 1
: . . .._. --_+ ______ ---! ---------; -... -__~_+________________ ---i---------l---------i---------l---------!---------!

‘5X5 ~-j. 2.4167 ~.] 2.4415 ~-j 2.5705 ~-] 2.99171–] 3.1180 ~-j 3.1648 ~-~ 3.4764 ~-j 3 .4816!-] 3.5054 !-j 3.5621:
L . --—-__-_, ,.–_---–__, ~___________________ I~__- __-___ : _________ ,~_____________ –– ____ I

7X7

: ---------: ---- _____ : __________

1- I 2,4166 ;-] 2.44151- I 2.5703 ~-g 2.9903 /-, 3.1178 ~-j 3.1647 /-j 3.47641- I 3.48151-] 3.5054 ~-j 3.55841
;..---._-–’ ~---------, ---... ---, ______ .._, _________ r _________ ~------- .--r -.-_______ f-____ . . . .._I~_________ F-_----___;

:9X9 ~- I 2.4166~– I 2.4414 ~-j 2.5702 ~-j 2.98971–I 3.1177 ~-j 3.1647 ~-j 3.4764 ~-j 3.4814 ~-j 3.5054 ~-j 3.5573;
. ..--- __. —. . . . . . . . . . . . . . . . . . .._ L__---_———

!
.T . . . . . ..__r___.. ––

__ T_________ ;;~~; ;~~~~`-------; ~L-------; ;;; ;llllrll;lllllllll -_______ -_`_________,~_______ ~_______ ;___ -__-__ r___ --___-l
I I I 1 I I r

, mode no. ~ I I t

w

( , I t I 1
21 } 22 ; 23 I 24 ; 25 ! 26 I 27 I 28 ; 29 I 30 :

I matrix , I ( I t , I I 1 I ,
: Order , ,
L._–. .---– + -– ._ --- __+_________ ;_________ +____ -____ f______
~5 x51

---i---------i---------l---------i---------;---------j
l-, 3.5867 ~-, 3 .5914\-, 3 .7128!-, 3 .7903!-, 3 .85971-, 3.9001;–, 3 .9082!-, 3 .9162!-] 3 .9609!-, 4.0982,

L --. -_____ +_________ ,~------- ,__r-_-_-_–__, ~______ . ..p ________ I~--------- l------- __:_____ -__-: ________ -~_________l

,-, 3 .5868,-, 3.5913 ~-] 3 .7121,-] 3.7793 ~-] 3.85551-
,

~-~-~ -~---} ----. --..~.__... ---} -.. ______ ~____ --___ ~___ -_____ :_~_~l~~~~\~~_~ .9O8O~ ‘1 3.9160~ -I 3.9607~ -j 4.0964/-----: --. ___; ________ L________ --__.l

9X9 1- I 3 .58691-I 3 .59131-I 3 .7118/-I 3. 77621-I 3 .85341-I 3.9002 !-I 3 .90791-3 3.9159 ~-j 3.9607 !-j 4.0953!
,

Parameters: As in Table I.

TABLE IV

THE COUPLING INTEGRALS (1,, = ~ (e, x lr; ) ~dS) BETWEEN Two

MODES OF A UNILA;EBAL FINLINF

Slot width
(mm. ) 0.5 0.7 0.8 1.0

~1 (0.00000 )-J(3.08835) (0.00000 )-j(3 .09792) +( O. OO368)-J(3.1O463) +( O. 00855), J(3.1O558)

~2 (0.00000 )-J(3.11208) (O. OOOOO)-J(3.1O892) -(0.00368 )-J(3.10463) -( O. OO855)-J(3.1O558)

111 (o.OOOoo)+J (l. ooooo) (o.OOOoo )+ J(l. ooooo) +(0.00009 )+j(0.00012) .( 0.00023)+J (0.0 CI1317)

112
(0.0000 O)+ J(O.00038) (0.00000 )+j(0.00024) +(0.90786 )+](0.41927) +(0.28358 )+ J(0.95895)

121
(0.00000 )+ J(13.01J1311) (0.00000 )-J(0.00007) -(0.90786 )+ J(0.41927) -(0.28358 )+ J(0.95895)

*22
(0.00 (100) -J(!. OIJWJO) (0.00 tlOO)-J (l. OflLlfJO) -(0.00009 )+ J(0.00012) +(0.00023 )+ J(0.00017)

slot width
(mm. ) 1.1 1.3 1.4 1.5

~1 +(o. oO912)-J(3.1O489) +(0.00192 )- J (3.09950) (0.00000 )-J(3.08082) (0.00000 )-J(3.06148)

~z -(0.00912 )-J(3 .10489) -(0.00192 )-j(3.09950) (O. OOOOO)-J(3.1O667) (0.00000 )-J(3.10869)

111 -(0.00048)+3(0.00011) -(0.00102 )-J(o .00369) (o.OOOoo) -J(l. ooooo) (o.OOOoo) -J(l. oooOo)

112 -(0.08344 )+ J(0.9965t) -(0.98287 )+ J(O. 18427) (0.00000 )-J(O.00251) (0.00000 )-J(O.00259)

121 +(0.08344 )+ J (0.99651) +(0. 98287 )+ J (0.18427) (0.00000 )-J(O .00003) (o.OOOoo )+ J(o. oool O)

*22 +(0.00048 )+ J (0.00011) +( O. 00102)-J(0. OO369) (0.0000 O)+ J(l.00000) (0.0000 O)+ J(I.0131301J)

Parameters: As in Table I.
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Fig. 8. Dispersion characteristics of a pair of complex modes in a

unilateral finline. Parameters: a = 2 b = 3.556 mm, substrate thickness

= 0.254 mm, substrate dielectric constant= 2.22, slot width= 1.0 mm.
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Fig. 9. Dispersion characteristics of a pair of complex modes in a
unilateral finline. Parameters:a = 2 b = 3.556mm, substratethickness
=1.067 mm, substratedielectric constant= 20, slot width= 0.4 mm.
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Fig. 10. Dispersion characteristics of a pair of forward- and backward-

wave modes in a unilateral finline. Parameters: As in Fig. 9.

substrate (O.3 times the housing height) are finally investi-

gated. The dispersion curves of ~’ and a’ are plotted in

Fig. 9. The ( /3’/a’) ratio is much larger than in the

previous case, whereas the frequency band over which the

complex modes exist is much smaller now (about 20 GHz).

1321

The complex modes in this case are continued into a pair

of forward- and backward-wave modes. The backward-

wave mode exists over an extremely narrow frequency

band. This is shown in more detail in Fig. 10.
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