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Formulation of the Singular Integral
Equation Technique for Planar
Transmission Lines

ABBAS SAYED OMAR anp KLAUS SCHUNEMANN, MEMBER, IEEE

Abstract — The singular integral equation technique is used to determine
the normal modes of propagation in general planar transmission lines.
Taking finlines as an example, it is demonstrated how high-order modes
can effectively and accurately be calculated. It is also shown that complex
and backward-wave modes, which are known to exist in rectangular and
circular waveguides with dielectric inserts, can also exist in finlines.
Besides a discussion of their characteristic features, this paper describes
the conditions under which complex and backward-wave modes are found
in finlines.

I. INTRODUCTION

LANAR TRANSMISSION LINES include a variety

of structures showing one or more air—dielectric
and/or dielectric-dielectric interfaces with metal strips
printed at these interfaces. Determining the normal modes
of propagation in these structures is of fundamental impor-
tance. Due to the completeness property of the set of
normal modes [1}, an arbitrary electromagnetic field can be
expanded within this set so that the problem of determin-
ing the field, which can usually be formulated as a solution
of integro-differential equations, is reduced to a solution of
matrix equations.

Galerkin’s method in the spectral domain has been
successfully used in analyzing many of these structures
(see, e.g., [2]-[4]). In fact, this method is superior over all
other known methods if the dominant and the first few
higher order modes are computed. A characteristic matrix
of order 4 (which corresponds to just two basis functions in
the expansion of each of the unknown field components) is
quite sufficient to give accurate results. For the determina-
tion of still higher order modes, more basis functions are
needed so -that the order of the characteristic matrix is
increased considerably. The singular integral equation
technique (SIE), which has been used in [5]-[7] for solving
many waveguide problems and in [8] for the analysis of
microstrip lines, has the advantage of characterizing the
problem by a relatively small-order matrix. Furthermore, it
gives accurate results for the high-order modes as will be
shown below. Another advantage is that the matrix ele-
ments are all given by analytical expressions so that neither
infinite sums nor numerical integrations are involved.
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Because the weight of the mode in a field expansion
series becomes smaller as the mode order goes higher, the
determination of the first, say N, modes is the actual need.
Determining these N modes without loosing any inter-
mediate ones is actually a problem for planar guiding
structures, because it has been found that some pairs of
modes become complex modes [9]-[15] within one or more
ranges of certain structure parameters (e.g., the slot width
in finlines) at a given frequency or, alternatively, within
one or more frequency ranges at given structure parame-
ters. This problem will also be investigated here taking the
generalized unilateral finline as a case study.

Complex and backward-wave modes are known to exist
in circular and rectangular waveguides with dielectric in-
serts [9]-[17]. It was reported in [9] that the existence of
backward-wave modes in a shielded dielectric rod guaran-
tees the existence of complex modes there. More theoretical
as well as experimental investigations on complex modes in
circular waveguides with dielectric inserts have been per-
formed in [10]-[13]. Although the possibility of backward-
wave modes in rectangular waveguides with dielectric in-
serts has been reported a long time ago [16], [17], complex
modes in shielded rectangular dielectric image guides have
just been reported [14], [15].

In fact, finlines can be regarded as ridged waveguides
with dielectric inserts (the substrate), so that complex and
backward-wave modes may also exist there. The nature of
such modes in finlines should be similar to that of the
corresponding ones in dielectric-loaded rectangular and
circular waveguides.

II. Basic FORMULATION

The electromagnetic field in the generalized unilateral
finline shown in Fig. 1 is a linear combination of LSM and
LSE parts [1]. These two parts satisfy independently all
interface conditions. They are only coupled in order to
satisfy the edge conditions, as has been shown in [18]. The
tangential electric field E, and the surface current J at the
interface x = 0 can then be written as

E=E +E' J=J+J}
where superscripts e and A refer to the LSM and LSE
parts, respectively. The LSM part is, however, completely
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Fig. 1. Generalized unilateral finline.

characterized by the z-components (E;, J£) because
Ey=(-1/jB)dE;/dy J5=(—1/jB)dI;/dy

whereas the LSE part is completely characterized by the
y-components (E), J}*) because

E!=(1/jB)dE}/dy J!=(1/j8)dJ}/dy.

With electric walls at y =0 and y = b, the four compo-
nents Ef, J7, E!, and J) can be written as

Ef= Y A¢sin(nny/b)

n=1

[+ o]
JS = jueo Y, FeAgsin(nmy/b)

n=1
E}= ;()Aﬁcos(mry/b)
o0
Jy = (1/jepo) X Fldjcos(nmy/b) 1)
n=0

where F¢ and F! are the Fourier series expansion coeffi-
cients of the LSM and LSE Green’s functions, respectively
[19]. The SIE technique can now be formulated as follows.

1) Two cosine-series f;(y) and f,(y) are constructed in
terms of the tangential electric field E, so that they are
unknown only in the slot (s < y < s%). These cosine-series
are then given by

A(3)= T 4Dcos(nmy/b)
n=10

2)

where the coefficients A’ and A are, in general, two
independent linear combinations of 42 and A”.

2) Two sine-series f,(y) and f,(y) are constructed in
terms of the surface current J, such that the asymptotic
values (as n — o) of their coefficients are 4" and A®,
respectively. The expansion coefficients of the series g,(y)
and g,(y) defined by

gi(y)= 3 ADsin(nmy/b)—£,(3)

n=1

g (y)= Z Aﬁ?’ sin(nﬂy/b)—f4(y)
n=1

H(¥)= 3 4Pcos(nmy/b)
n=20

©)

are then vanishing asymptotically.
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3) Applying the boundary conditions to be satisfied by
fi(y) and f,(y), the coefficients AV and AP are de-
termined in terms of integrals of f;(y) and f,(y), respec-
tively, taken over the slot (s{ < y < 5%).

4) Substituting these integrals for A® and 4P into (3)
and applying the boundary conditions to be satisfied by
f3(y) and f,(y), we get two integral equations relating
fi(y) and f,(y) to g,(y) and g,(y), respectively. These
integral equations are of the standard singular type. Their
solutions are, e.g., given in [7].

5) Due to the asymptotic vanishing of the series coeffi-
cients of g,(y) and g,(y), these series can be truncated
behind the Nth term, so that the functions f,(y) and f,(y)
are then known in the slot in terms of 4D and A®, n < N.

6) The back substitution of f,(y) and f,(y) in the
integrals determining AP and 4D, n< N —step 3)
—along with additional conditions (to be discussed later),
results in a finite homogeneous system of linear equations,
from which the propagation constants, as well as the field
expansion coefficients of the different modes, are obtained.

Care should be taken, however, in constructing ( f;(y),
f(y)) and (f5(y), f4(y)) which are related to E, and J,
respectively. This is because E, and J,, as well as dE_ /dy
and dJ, /dy, are singular at the edges (y = s{, y =s3) [20].
The order of singularity is the same for all components,
namely |y —s’|”%/% This is exactly the proper type of
singularity, which can be described by the SIE technique.
Hence, any y-differentiation of either E,, J,, dE, /dy, or
dJ, /dy is not allowed in constructing f;(y), f,(»), f3(»)s
and f,(y). This leads to two alternatives. In the first case,
A® and AP are linear combinations of 4¢ and A*, so
that the LSM and LSE parts of the field are coupled from
the beginning. We call this formulation the coupling one.
In the second case, 4P and A? are proportional to A4°
and Af,, respectively, so that the LSM and LSE parts of the
field are decoupled. Coupling is performed as a final step
in the form of additional conditions, as will be shown later.
We call this formulation the decoupling one.

A. The Coupling Formulation
The functions f,(y) and f,(y) are constructed as

H(y)=dE./dy

£(») = [(k3 = B2 E, + jB(dE. /dy)] /jeon
whereas f;(y) and f,(y) are constructed as
() = [(K"B> = K°k§)J. + jBK"(d], /dy )| /jwoeo K K"

fo(y)=[JB(K = K")J,+ K"(dl, /dy)| /K°K".  (5)

Here K¢ and K" are the asymptotic limits of (n7/b)-F¢
and E!/(nm/b), respectively.

The expansion coefficients 4’ and 4P of f,(y) and
£>(y), respectively, are then related to 4¢ and A" by

AD | | (na/b) —(nm/b)’/jB
AD | |jweo(nm/b) /B ol /jop,

(4)

A5,
Ah

| S|

(6)
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where a?=k2— B2 —(nw/b)% The series expansions of
f3(y) and f,(y) are readily proved to have the following
forms: ‘

H(0) =X [POAP + PPAP]sin(nmy/b)

n=1
L) = 3 [00AD+ QP4 sin(nmy/b)  (7)
n=1 N

where PO, P®, QO and QP are given in terms of F?¢
and F! with their asymptotic limits being 1, 0, 0, and 1,
respectively.

The series' g,(y) and g,(y) defined in (3) are then given

by

o0
g1(y)= X [(1-P®)AP - PPAD] sin(nwy/b)

n=1
o0
g:(y)= L [-0P4P +(1-0P) AP ] sin(nmy/b).
n=1
(8)
Defining

(p=7Ty/b, QJ1=7TS{/b, (p2?WS£/b (9)
we can write for the boundary conditions to be imposed on

(@) fal®)
fi(<p)={0 O<o<o, p<p<m)
hie) (;i<o<o,)
fiia(®)=0 (pr<o<gy), i=1,2.
The coefficients A and AP are then given by

AP =1[(i~1) /7] fqp “h. (@) do

(10)

AD = [2/77]/%h,.(<p)cosmpd<p, i=1,2. (11)
P

Making use of the transformations
cosp = cos [(@ + 1) /2] cos [(p, — 91)./2]
, —nsin[(%+¢1)/2] sin [(¢, — ¢1)/2]
G,(n)=g(9)/sing
H,(n)=h(9)/sinp, i=12 (12)
we get the following standard singular integral equations:
+1
Gi(n)= (1/7T)fH1 H(v')/(n—w)dr,
—1<n<+1, i=1,2. (13)
Their solutions are
H,(n) = (1=n*) [ 4§/ sin[(g, +¢,)/2]
. +1
sin (g2 = g2) /2] + (/) [ 11— )2

G (n)/(w=n)dy, i=12. (14)

As may easily be seen, the vanishing of f,(y) and f,(»)
on the metal fins and that of f,(y) and f,(») in the slot,
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which are the considered boundary conditions, are only
necessary conditions for the vanishing of E, and J, on their
respective regions (i.e., E, on the fins and J, in the slot).
This guarantees the vanishing of E, and J, on their respec-
tive regions but only the constancy of E, and J, on their
respective regions. However, points y=0 and y =5, at
which E, = 0, belong to the fins, so that the constant value
of E, on the fins is automatically zero. Hence, just one
additional condition must be imposed, namely the vanish-
ing of J, at any point in the slot, so that the constant value
of J, over the slot is put to zero.

B. The Decoupling Formulation
Functions f,(y) and f,(y) are now constructed as

af,/dy =V, E=- AEZ/jB
fz(y)=§'(thEt)=AtE}fl/j:B (15)

whereas functions f;(y) and f,( y) are constructed accord-
ing to

L(y)= "(Vz"]s)/j"-’ioKe
=—A4,J;7/we,BK*

df,/dy = jopo[i(v,x J)] /K"

= wpod J)/BK". (16)

Here v, and A, are the del and laplacian operators in the
y—z-plane, respectively, and 7 is the unit vector in the
x-directions. The boundary conditions to be imposed on
L), (), f5(3), and fi(y) (which are df;/dy=0=
f2(») on the fins and f,(y)=0=df,/dy in the slot) are
again necessary conditions for the vanishing of E, and J,
on their respective regions. In this case, it is guaranteed
that the individual components of E, and J, are harmonic
functions on their respective regions [19], so that additional

" conditions must be imposed. These conditions can be

shown to be the vanishing of only one component of E,
and J, on the boundaries of their respective regions, which
are the edges (y =s{, y=s}).

IIL

The only approximation involved in the SIE technique is
the truncation of the infinite series g,(») and g,(y) be-
hind the Nth term. However, it can be proved that the nth
coefficients of g,(y) and g,(») are almost zero if (n7/b)*
> (€,k% — B?), where &, is the largest dielectric constant
involved. This limits the number of high-order modes,
which can be calculated accurately, because the propa-
gation constant of the highest order mode (which usually is
evanescent) should satisfy

HiGH-ORDER MODES ACCURACY

1B < [(N+1)m/b]*~ & k3.

For normally used dimensions, dielectric constants, and
operation frequencies, N =3 (corresponding to a char-
acteristic matrix of order 7) is sufficient to give the first 30
modes accurately.
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inductive

Fig. 2. Typical behavior of inductive and capacitive modes with increas-
ing slot width.

IV. THE PROBLEM OF MODE DISAPPEARANCE

It has been shown in [18], that the modes of the gener-
alized unilateral finline behave either inductively or capaci-
tively if they are below cutoff. The interesting difference
between the two types is the dependence of their propa-
gation constants on the slot width. The propagation con-
stant squared (B?) (which is always a real number in the
lossless case, whether the mode is below or above cutoff) of
an inductive (a capacitive) mode decreases (increases) versus
the slot width, as is shown in Fig. 2. Consider now the
modes for a certain slot width being arranged according to
their 2. If one of any two successive modes is inductive
with 82 while the other is capacitive with a smaller 82, and
the slot width is increased, then 82 and B2 approach each
other up to a certain slot width where 82 = 2. For this slot
width, we get two degenerate modes which are no longer
orthogonal. They should be treated carefully because of the
strong coupling between them. If the slot width is increased
beyond this value both modes will disappear. This will be
illustrated in the following.

The final step in nearly all mode analysis methods is the
solution of a homogeneous system of linear equations
which can be written as a matrix equation

[C]-x=0.

The elements of the matrix [C], usually called the char-
acteristic matrix, depend on the unknown propagation
constant 3. The elements of the column vector X de-
termine the electromagnetic-field configuration of the mode
whose propagation constant is 8. The elements of [C] can
always be normalized in such a way that they are all real
functions of B2 if the structure is lossless. The matrix
equation is solved by looking for the values of 8, making
the matrix [C] singular. Each of these values characterizes
one of the structure modes.

For our case, we assume that the finline is lossless so
that the determinant of the matrix [C] is a real function
D(B?*). The different modes are then obtained by looking
for the zeros of D(B2). The behavior of D(B?) near the
aforementioned successive inductive and capacitive modes
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Fig. 3. Typical behavior of how two modes disappear.
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Fig. 4. Typical behavior of how two modes reappear

for a certain range of the slot width typically is as shown in
Fig. 3. As the slot width increases from s; to s,, 82 of the
inductive mode decreases, while that of the capacitive
mode increases. At s; the two modes become degenerate
and at s, they disappear completely. This effect occurs
within a certain range of slot widths. Afterwards, we get
the situation shown in Fig. 4. At s; (> s,), the two modes
are still nonexisting; at s,, two degenerate modes are
obtained, and for s > s¢, two nondegenerate modes exist
again: one is inductive (now to the left-hand side) and the
other is capacitive (to the right-hand side). It is important
to note that when the slot width increases from s, to sg, B2
of the inductive mode still decreases while that of the
capacitive mode still increases.

The disappearance of some modes at a given frequency
within a range of slot widths (namely for s; <s <s4) or,
alternatively, at a given slot width within a range of
frequencies is physically impossible. This can be explained
by regarding the finline discontinuity shown in Fig. 5.
Assuming that §s < s,, this discontinuity is very weak, so
that any incident mode in finline “a” can be nearly matched
at z, to a single mode in finline “b” of nearly the same
field configuration (whose propagation constant is very
near that of the incident mode). Let us hypothetically
assume that the incident field in finline “a” consists only
of the two degenerate modes (shown in Fig. 3). If there
were no modes in finline “b” with propagation constants
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Fig. 5. A weak finline discontinuity.

which are near to that of the incident modes in finline “a”,
we should expect that there are also no modes in finline
“b” with field configurations which are similar to those of
the incident modes in finline “a”. This means that the
matching at z, requires a large number of excited modes at
both sides of discontinuity, which contradicts with the
weakness of the discontinuity.

V. FiINLINE CoMPLEX MODES

Modes with complex propagation constants in lossless
guiding structures have been known for a long time as
“complex modes” [9]. They have been reported in [9] to
occur as a continuation of backward-wave modes in the
modal spectrum of shielded dielectric rods. They can also
exist even if there is no region of the spectrum in which
backward-wave modes can propagate {10]. The same has
been reported in [14] and [15] with respect to shielded
rectangular dielectric image guides. In both cases, back-
ward-wave and complex modes can exist in a waveguide
with a dielectric insert as modes of “hybrid-type.” They
cannot exist in a dielectric loaded circular waveguide
without azimuthal dependence, because modes with no
azimuthal dependence are either TE-type or TM-type
modes. They can also not exist in the dielectric-slab loaded
rectangular waveguide because the modes of this structure
are either of the LSE type or LSM type [1].

Finlines are, in fact, dielectric-loaded ridged waveguides,
the modes of which are all of hybrid-type. Complex and
backward-wave modes are consequently possible in finlines.

Now, we return to the problem of mode disappearance.
The only possibility fer the disappearance of the aforemen-

tioned two modes is that their 8% are no longer real. Hence, -

zeros of D(B?%) must be looked for in the complex plane
rather than on the real axis. Although D(B?) is a com-
plicated function and not at all a “polynomial with real
coefficients,” its zeros for the particular slot width range
are found to be always a complex conjugate pair.

Now, let us investigaté a pair of complex modes in some
details. As shown in Fig. 6, let the corresponding complex
conjugate zeros of D(B?) be B? and B7. Their square
roots, which are physically possible for a z-dependence
e /%% and a time dependence e’**, are also shown and can
be written as

Bi=B"—jo' By=—B"—jo
where o’ and B’ are positive numbers. This means that one
mode propagates in the + z-direction and is attenuated in
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Fig. 6. The propagation constants of two complex modes.

the same direction. The other mode is also attenuated in
this direction; it propagates, however, in the — z-direction.
From the first view, it is easily stated that a mode with the
complex propagation constant B, propagates in the same
direction, in which it is attenuated; this means a continu-
ous energy loss, although the structure has been assumed
lossless. The other mode with propagation constant S,
propagates opposite to the direction in which it is damped;
this means a continuous energy gain, although the structure
is passive. This point of view would be correct only if the
two modes were not coupled. In fact, it has been found as
a result of extensive numerical investigations that the two
modes are so strongly coupled, that the electric field of
each mode does not couple to its own magnetic field, but
to the magnetic field of the other mode, i.e.,

/S(elXh;")-dS=0=fS(e2><h3‘)-dS (17)

J(erxhg)-ds=p#0 [(e;xht)-dS=—p*.
N S
(18)

Here e,(h;) and e,(h,) are the transverse electric- (mag-
netic-) field vectors of the modes with propagation con-
stants 8, and B,, respectively, and S is the finline cross
section. It has also been found from the same numerical
investigations that, although the two modes are coupled in
energy sense, they are still orthogonal in the sense of the
following orthogonality relations:

L(elxhz)-dS=0=/S(e2><h1)-dS (19)

fs(e1 X hy)-dS = p fs(e2 X h,)-dS = — p*. (20)

A similar result has also been obtained for the shielded
dielectric rod [13] and the shielded rectangular dielectric
image guide [15]. Equations (17) and (18) mean that each
mode cannot exist alone; both should always exist to-
gether, if they exist. As will be shown below, (18) plays an
important role in the evanescent nature of the two coupled
modes. )

Now we investigate the problem from the energy point
of view. Let us assume that the two questionable modes are
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excited (by, e.g., a certain discontinuity). Because each of
these modes is not coupled to the other modes which may
also be excited, it is sufficient to study the energy con-
tained in these two modes only. Let E and H be the
transverse electric- and magnetic-field vectors, respectively,
of the two superposed modes; i.e., let

E = Aje P + Ae /P,
H = Aje ™ Ph + A,ePh,.

Integrating the Poynting vector over the finline cross sec-
tion, and making use of (17) and (18), one obtains

P=[(EXH*)-dS = jWsin(2z + §)e >
S

where A, 4%p = —(W/2)e/?. The vanishing of the real
part of P guarantees that the two superposed modes carry
no active power, i.e., they behave as a whole evanescently.
The energy stored in these superposed modes is shown in
Fig. 7. It oscillates along the line once being inductive and
once being capacitive in nature with exponential decay.
This behavior is not, however, unexpected because one of
these two modes was inductive and the other one was
capacitive before their 82 disappeared on the real axis.

The vanishing of the active power transmitted by a pair
of complex modes has also been reported in [13] and [15]
for the shielded dielectric rod and image guide, respec-
tively, although using a different reasoning, namely, the
total active powers transmitted inside and outside the
dielectric region, are of equal magnitudes but of opposite
directions.

VI

Although pairs of complex modes can exist in finlines
for any value of the substrate dielectric constant ¢,, back-
ward-wave modes can only exist when the value of e, is
relatively high. Small values of €,, which are usually used
for normal finlines (typically, €, =222), lead to a very
small (B’/a’) ratio of any pair of complex modes which
can exist. No backward-wave modes have been found for
small values of ¢,. However, if both €, and the substrate
thickness are considerably increased, the (8’/a’) ratio of
low-order compiex modes increases considerably. In ad-
dition, if a pair of complex modes is near cutoff, it may be
continued into a pair of forward- and backward-wave
modes.

Finally, we would like to state that, although finlines
have only been investigated, we believe that complex and
backward-wave modes can also exist in any planar guiding
structure with closed conducting boundaries.

BACKWARD-WAVE MODES IN FINLINES

VIIL

To illustrate the fast convergence of truncating the char-
acteristic matrix, the propagation constants of the first 30
modes of a unilateral finline have been calculated for three
different slot widths using a matrix order of 5, 7, and 9
(i.e., truncating the infinite series g,(y) and g,(y) behind
the 2nd, 3rd, and 4th term, respectively. The results in

NUMERICAL RESULTS
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Fig. 7. Net stored energy of the superposed complex modes.

Tables I, II, and III show that, whatever the slot width, a
matrix order of 7 is quite sufficient to give accurate results
for the first 30 modes.

The four coupling integrals given in (17) and (18) have
been numerically calculated by using a 100-term Fourier
expansion for each field component. The results are tabu-
lated in Table IV for the slot width ranging between 0.5
mm and 1.5 mm. For 0.5 mm < s < 0.7 mm, we have two
ordinary evanescent modes. The first (second) is inductive
(capacitive) with B% decreasing (increasing) versus s. The
values of the coupling integrals are in good agreement to
the exact values given, e.g, in [1] for general inhomoge-
neously filled waveguides. For 0.8 mm <5 <1.3 mm, we
have a pair of complex modes. The coupling integrals are
again in good agreement with the values given by (17) and
(18). The smallness of the (8’/a’) ratio is due to the
smallness of the substrate dielectric constant (e, = 2.22)
and the substrate thickness. Higher (8’/a’) values can be
obtained by increasing these parameters as will be shown
later. Finally, for 1.4 mm <s<1.5 mm, we have two
ordinary evanescent modes again. The first (second) is now
capacitive (inductive) with 82 increasing (decreasing) versus
s. The quantitative values of the coupling integrals are
again in good agreement to the exact values given in [1].

The frequency dependencies of 8’ and «’ of the complex
modes existing in the same finline with a slot width of 1.0
mm are plotted in Fig. 8. For F <15 GHz, we have two
ordinary evanescent modes. Their dispersion curves are not
distinugishable in the figure. The values of their «’ at, e.g.,
F =10 GHz are (3.1608 mm™!) and (3.1673 mm~!). For
15 GHz < F <117 GHz, we have a pair of complex modes.
An interesting observation is the wideness of the frequency
band over which the complex modes exist (more than 100
GHz). This wideness is, however, related to the smallness
of the (B’/a’) ratio (note that the upper plot of Fig. 8 is for
100 times B’, whereas the lower one is for a’) because this
band decreases considerably when the (8’/a’) ratio in-
creases as will be shown below. For F>118 GHz, the two
complex modes are continued into two ordinary evanescent
modes again.

Complex modes in a finline with a high value of the
substrate dielectric constant (¢, = 20) and a relatively thick
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TABLE1
THe PROPAGATION CONSTANTS OF THE FIRST 30 MODES IN A
UNILATERAL FINLINE OF (.2-mm SLOT WIDTH

H V i B B T T
i mode no. : : : ! :
! 1 2 3 4 5 | 6 7 g ! 9 | 10 i
i matrix i | H
| order ) '
s - shmemmmmoe- b i
]
I 5x%x5 +0.6837 | -3 0.6067) -3 0.7448] -§.1.5955] -5 1.6489{ -5 1.6801} ~3 1.7472| -7 1.9938} -3 2.4747i—3 2.5509!
e r R
L7 x0T +0.6824 1-3 0.60671 -3 0.7448! -3 1.5955/ -3 1.6489{ -] 1.68011 -3 1.74701 -3 1.9926i -3 2.4747) -3 2.5495
r - - - T - !
] 1 1
'9x09 +0.6820 1 -3 0.60671 -3 0.7448) -3 1.59551 -3 1.6489 -7 1.6800 1.7470] -3 1.9922! -3 2.4747! -3 2.5491
2 I 22 : _
- ] I !
) ] i 1
t ! ) |
! 11 12 13 14 15 16 17 18 | 19 ! 20
| matrix H ! i
| order H 1 I
: e foroeneees |
i
; 5 x5 -3 2.7083{-3 3.0745} -3 3.1136) -3 3.2065/ -3 3.2384{ -3 3.3653| -3 3.4763§-j 3.4976) -3 3.6058] -3 3.6683
FTTTTT T - T - e -
]
f 7 x 7 ~3 2.7073{-3 3.0738i-j 3.11361 -3 3.20651 -3 3.2375{ -7 3.36491 -3 3.47631 -3 3.497Li -3 3.6057 -j 3.6656
Frmmm—--=- r - - ——— - - - B by mleleb i b t
[
f 9 x 9 1-3 2.7070!-3 3.0735! -3 3.1136] -3 3.2065! -3 3.2372! -3 3.3648) -1 3.4763) -3 3.4969 -3 3.6057i-j 3.6648
_________ 2 2l : b 2 !
[ TS T - f T -
1 1 | t
1 mode no I ] !
! 21 22 23 24 PI 26 27 28 ! 29 ! 30
| matrix | | i t
| order ! |
H - - — I S Lmimmmcee
]
t
L 5x%x5 -3 3.8140{-3 3.8787)-7 3.9308) -3 3.9683) -3 4.0196] -3 4.0854] -3 4.2335 -1 4.3530} ~j 4.3621{ -3 4.4326!
_____ - FPRRUP R S ot - ___L_--..-_.._________-____________L-..___-___I
;
]
P7x7 -3 3.81301-j 3.87871-3 3.9308{ -3 3.9663]~7 4.0196] -3 4.0786] -3 4.2318) -1 4.3483( -3 4.3635! -) 4.4326!
r——---- - iatel Saiitatedininiet [ro==——mmepe———— - | ittt ettt sttt ptddieh i iled !
]
19x 9 1-33.81270- 3.8787]-3 3.9308) -3 3.9658] - 4.0196{ -1 4.0770} -7 4.2314] -3 4.3475 -3 4.3637 -7 4.4326
______________________________ e [ St NIt
Parameters: g =2 b= 3.556 mm, substrate thickness = 0.254 mm, substrate dielectric constant = 2.22, frequency
=30 GHz.
TABLE II
THE PROPAGATION CONSTANTS OF THE FIRST 30 MODES IN A
UNILATERAL FINLINE OF 1.0-mm SLOT WIDTH
rTTT T T - r==-= [ tatenindesiieniil it r -
! 1 ] t ]
rmnde no : : : {
) 1 i 2 E 3 | 4 . 5 6 7 8 9 10
1
matrix ! ! | ]
! ] ]
order ) 1 . I |
Fmmmmmmmmmpemm oo pommmmm F -+ - -
L5 x5} +0.5976 i-; O.6154i—] 0.85641 -5 1.60311 -7 1.64891 - 1.68471 -4 1.76971 -3 1.88771 =j 2.0873) =3 2.4642
S o T I o yTTTTTTTTT :
! s
b7 x 7§ +0.5976 !-] 0.61541-) 0.85641-3 1.60311 -] 1.64891 -3 1.6847}~3 1.7697!~) 1.8877 -j 2.0873! -] 2.4640
et ek | aadiniadei it Fomm e r== -
"9x9 i +0.5975 i-j 0.61541 -7 0.85631 -3 1.60311-7 1.64801 -4 1.68471~3 1.76961 ~j 1.88771 =3 2.08721 -j 2.4640
Sl Mt :' FT - QT
:‘mode no. :
. 12 ! 13 14 15 16 17 18 19 20
: matrix ]
| order !
IL __________________ b
L5 xS 2.6055) -7 2.8094} -7 3.2019! -7 3.2757) -3 3.4238) -3 3.4764} ~7 3.5024{ -3 3.5950} -3 3.6260
:
;
7 x 7 2.6054{ -3 2.80941 -7 3.2014) -3 3.27571 -3 3.4230)-3 3.4764} -3 3.5021} -j 3.59481 -3 3.6234
s z e N
L 9x 9 2.60541 -3 2.8089] -3 3.2012{ -3 3.2756] -3 3.4221} -3 3.47641 -3 3.5021} -3 3.5947 -j 3.6225
|2 e E I- _________ r ________ 1
] | ] ]
:mode no : : l
' 22 | 23 ! 24 25 ! 26 27 28 | 29 30
: matrix : : | |
| order . !
R o _
1 ]
' 5x5 3.8520/ -7 3.8605) ~7 3.9270} -3 3.9783} -3 4.0130! -3 4.1337) -7 4.2822} -3 4.4232} -3 4.4794
___________________ W - —————be
T ]
Y7 x 7 -9 3.8518) -7 3.8563) -7 3.9265| -7 3.9750i -7 4.0120i -1 4.13261-) 4.2815) -7 4.4212} -) 4.4729
i | ik i— -------------------- e po===mee-- pro-m-—--
S 9 x o 3.8516 -3 3.85400 -3 3.92631 -3 3.97461 -3 4.0115] -1 4.1326! -3 4.2806! -7 4.3498} -) 4.3543

Parameters: As in Table I.
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TABLE III ‘
THE PROPAGATION CONSTANTS OF THE FIRST 30 MODES IN A
UNILATERAL FINLINE OF 3.0-mm SLOT WIDTH

T T L S re=—mm——— o ———— | Stk shaddl - — T
] ] | 1 |
rode no. | ! [ ! !
' i [ 2 3 4 54 6 7 8 9 10
. ' i 1 ] ]
matr iR~ H i i |
y order 1 : : I
r ' T - "
P05 x5 1 +0.4931 }-3 0.62071-3 1.13561-3 1.6489/-3 1.6501i-3 1.70801~3 1.7391i-3 1.87211-3 1.8777 -3 2.0731
e mm e - -
0 T T T r
| 1 i
D7 %7 1 +0.4930 {-3 0.6207!-3 1.1356!~) 1.6489!~3 1.65011-3 1.7080{-3 1,73821-3 1.87211-§ 1.8776{ -3 2.0723
I pTTTTTT R -
E 9 x 9 | +0.4930 }-3 0.6207!-3 1.1355{-3 1.6489!-3 1.6501!-3 1,7080! -3 1.7379!-3 1.87211-3 1.8776!-§ 2.0719
> . - —_ -
T T T T - T -
' 1 1 1 t !
| 1 ) 1 1 |
1 1 ] 1
! ! 1n ! 12 | 13 12 15 16 17 18 19 20
] ]
D matrixeJ :
| order : I
,L _______ 1|' '''''''' | - I B
‘L 5 x5 1-3-2.41671-] 2.4415)-3 2.57051-3 2.99171-3 3.11801-3 3.1648i~3 3.4764) -3 3.48161 -7 3.5054) -3 3,5621
roTTTmTh T TeTTm T T rmToT T =
1 1
¢ 7 x 7 1=) 2.4166!-3 2.4415!-3 2.5703{-3 2.9903{-3 3.1178!-3 3.1647!-3 3.4764]~7 3.4815!-3 3.50541 -3 3,5584
b potolillll N :
¥
i 9 x 9 }-12.4166/-3 2.4414!~3 2.5702}-3 2.9897!-3 3.1177!-3 3.1647|~3 3.4764!-3 3.4814{-j 3.5054] - 3.5573
oo TTTmEs T T T - T == T ]
H 1 1 1 i
(mode no : : : :
! ! 21 22| 23 24 25 26 27 28 29 30
I ]
[ matrix ™~ : 1
l order : ! : :
s SN S —- i -
' i T T
15 x5 1-) 3.58671-3 3.59141-3 3.71281-3 3.7903{-3 3.8597(-3 3.9001i-3 3.90821 -7 3.9162 -7 3.9609| -7 4.0982
| S
T B ittt s ) e r= - T
+ ]
i_ 7 x 7 {l--] 3.5868!1-3 3.59131-3 3.71211-) 3.77931~) 3.8555{~-3 3.9002!-3 3.9080!-3 3.9160i-3 3.96071 -3 4.0964
e H e M [ -t = - Tyt
P9 x 9 5—3 3 58695-3 3.59135-3 3.71181-] 3.77621-3 3.8534i-3 3.9002{ -3 3.9079{-7 3.9159{ -j 3.9607 -3 4.0953
e e e e ——— -
Parameters: As in Table L
TABLE IV

THE COUPLING INTEGRALS (], = f (e, X h})-dS) BETWEEN TwoO
S

MODES OF A UNILATERAL FINLINE

sl?ﬁ.;f?th 0.% 0.7 0.8 1.0
By (0.00000)-3(3.08835) | (0.00000)-3(3.09792)] +(0.00368)-3(3.10463) +(0.00855)-7(3.10558)
By (0.00000)-3(3.11208) |  (0.00000)-3(3.10892) -(0.00368)-3(3.10463) | -(0.00855)-)(3.10558)
Ty (0.00000)+3(1.00000) | (0.00000)+3(1.00000)] +(0.00009)+3(0.00012) | -(0.00023)+3(0.00017)
1, (0.00000)+3(0.00038) |  {0.00000)+;(0.00024)| +(0.90786)+3(0.41927) | +(0.28358)+](0.95895)
I, (0.00000)+3(0.00011) | (0.00000)-3(0.00007)] -(0.90786)+)(0.41927) | -(0.28358)+](0.95895)
Ly, (0.00000)-3(1.00000} | (0.00000)~3(1.00000)| -(0.00009)+3(0.00012) | +(0.00023)+](0.00017)

51((1;.;1?1;!1 1.1 1.3 t.4 1.5
By +(0.00912)-3(3.10489) | +(0.00192)-7(3.09950)| (0.00000)-3(3.08082) | (0.00000)-7(3.06148)
By -(0.00912)-3(3.10489) | -(0.00192)-3(3.09950) (0.00080)-](3.10667)| (0.60000)-7(3.10869)
Iy -(0.00048)+3(0.00011) | -(0.00102)-3(0.00369}| (0.00000)-3(1.00000) | (0.00000)-3(1.00000)
Iy, -(0.08344)+3(0.99651) | -(0.98287)+3(0.18427)| (0.00000)-3(0.00251) | (0.00000)-;(0.00259)
Iy, +(0.08344)+3(0.99651) | +(0.98287)+3(0.18427)| {0.00000)-3(0.00003) | (0.00000)+3(0.00010)
I, +(0.00048)+3(0.00011) | +(0.00102)-3(0.00369)] (0.00000)+3(1.00000) | (0.00000)+](1.00000)

Parameters: As in Table 1.
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The complex modes in this case are continued into a pair
of forward- and backward-wave modes. The backward-
wave mode exists over an extremely narrow frequency
band. This is shown in more detail in Fig. 10.
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Fig. 8. Dispersion characteristics of a pair of complex modes in a
unilateral finline, Parameters: a =2 b = 3.556 mm, substrate thickness
= 0.254 mm, substrate dielectric constant = 2.22, slot width =1.0 mm.
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Fig. 9. Dispersion characteristics of a pair of complex modes in a
unilateral finline. Parameters: a =2 b = 3.556 mm, substrate thickness
=1.067 mm, substrate dielectric constant = 20, slot width = 0.4 mm.
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Fig. 10. Dispersion characteristics of a pair of forward- and backward-
wave modes in a unilateral finline. Parameters: As in Fig. 9.

substrate (0.3 times the housing height) are finally investi-
gated. The dispersion curves of B’ and «’ are plotted in
Fig. 9. The (B’/a’) ratio is much larger than in the
previous case, whereas the frequency band over which the
complex modes exist is much smaller now (about 20 GHz).
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